## ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

### Развитие компьютерной инфраструктуры

Для достижения главных целей ведущих проектов ОИЯИ потребуется обрабатывать огромное количество экспериментальных данных. Согласно весьма грубой оценке — это десятки тысяч процессорных ядер. В частности, для проекта NICA необходимы грид-инфраструктуры уровней Tier0, Tier1 и Tier2, для нейтринной программы ОИЯИ — вычислительные ресурсы и ресурсы хранения. Для поддержки стратегических исследований в ОИЯИ необходимо развивать распределенные многоуровневые гетерогенные вычислительные среды, в том числе и на ресурсах участников экспериментов.

Предполагается, что центры Tier0 и Tier1 для проекта NICA будут построены на ресурсах ОИЯИ, включая сотни петабайт долговременного хранилища необработанных данных. Это позволит обеспечить 25–30 % всех вычислительных ресурсов в распределенной системе, предоставление и поддержку основных сервисов для распределенной вычислительной системы (DIRAC, PanDA и др.).

Емкость хранилища данных и вычислительных мощностей для проекта WLCG, направленного на решение задач, связанных с участием ОИЯИ в экспериментах ЦЕРН, должны увеличиваться ежегодно на 10–20 %, что позволит сохранить требуемую скорость обработки данных.

Для разработки новых алгоритмов обработки и анализа данных на основе глубокого и машинного обучения потребуется поддержка и развитие инфраструктуры высокопроизводительных вычислений. Суперкомпьютер «Говорун» — это гибкая, масштабируемая, гиперконвергентная система, сочетающая в себе вычислительные архитектуры разных типов, иерархическую систему обработки и хранения данных. Развитие СК «Говорун» направлено на создание среды для суперкомпьютерного моделирования и решения ресурсоемких теоретических и экспериментальных задач ОИЯИ. Такая исследовательская среда необходима для параллельных вычислений, задач ML/DL/AI, квантовых вычислений, инструментов анализа и визуализации данных, прикладных пакетов, веб-сервисов для прикладных программ, учебных курсов и практик.

Одним из главных приоритетов Семилетнего плана является расширение облачной инфраструктуры ОИЯИ и создание интегрированной облачной среды для экспериментов ОИЯИ и его стран-участниц на основе технологий контейнеризации. Прогресс в этой области будет во многом зависеть от готовности экспериментов к переходу на такой рабочий процесс.

Развитие информационных технологий напрямую связано с дальнейшим развитием сетевой инфраструктуры ОИЯИ. Поддержка современных сетевых технологий включает программно-определяемые сети (SDN), сети доставки содержимого (CDN), именованные сети передачи данных (NDN) и технологии построения распределенных центров обработки данных (DCI) Data Center Interconnect.

Стратегия развития Больших данных в ОИЯИ включает широкий спектр исследований: подготовку инфраструктуры хранения и обработки Больших данных (аппаратное и программное обеспечение, безопасность); разработку современных методов и алгоритмов Больших данных для решения прикладных задач; интеллектуальный мониторинг функционирования и безопасности распределенных вычислительных систем; предоставление инфраструктуры Больших данных для конечных пользователей.

Первоочередной задачей в области разработки и применения квантовых вычислений, квантовой программной инженерии и квантового интеллектуального управления является построение квантовых систем интеллектуального управления физическими экспериментальными установками, в том числе для случаев непредвиденных и непредсказуемых ситуаций.

Исходя из этих потребностей, основное направление развития ИТ-экосистемы ЛИТ связано с модернизацией сетевых каналов связи, инженерной и вычислительной инфраструктуры Многофункционального информационно-вычислительного комплекса (МИВК), а также с развитием технологий обработки и хранения данных для экспериментов NICA и нейтринной программы

ОИЯИ. Для обеспечения стабильной работы МИВК требуется регулярное обновление и обслуживание существующей инфраструктуры.

ИТ-экосистема станет базовой платформой для подготовки ИТ-специалистов, способных разрабатывать алгоритмические и программные решения для задач ОИЯИ.

Все работы будут проводиться в тесном сотрудничестве с исследовательскими группами и ИТ-специалистами из всех лабораторий ОИЯИ и стран-участниц.

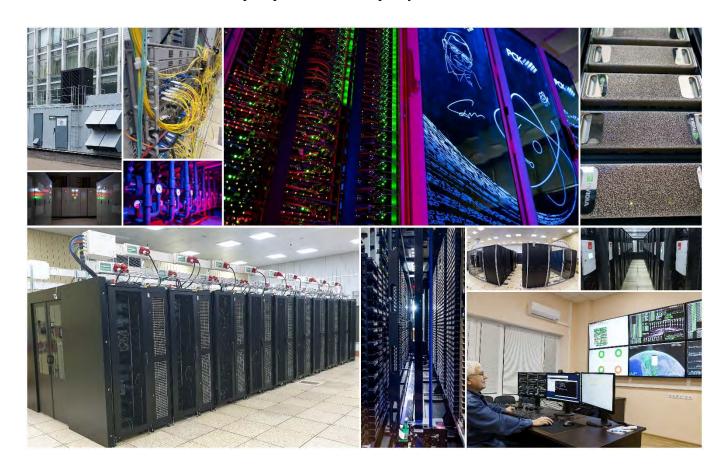



Рис. 32. Элементы Многофункционального информационно-вычислительного комплекса

### Ожидаемые результаты:

- Модернизация инженерной инфраструктуры МИВК ОИЯИ (реконструкция в соответствии с современными требованиями машинного зала 4-го этажа ЛИТ).
- Модернизация и развитие офлайн распределенной вычислительной платформы для проекта NICA с привлечением вычислительных центров коллаборации NICA.
- Создание грид-кластера Tier0 для экспериментов мегапроекта NICA для хранения экспериментальных и смоделированных данных. Расширение производительности и емкости систем хранения грид-кластеров Tier1 и интегрированного Tier2/CCIC в качестве центров обработки данных для экспериментов мегапроекта NICA, нейтринной программы ОИЯИ и экспериментов на LHC.
- Расширение облачной инфраструктуры ОИЯИ с целью увеличения предоставляемого пользователям спектра сервисов на основе технологий контейнеризации. Автоматизация развертывания облачных технологий в организациях стран-участниц ОИЯИ.
- Расширение гетерогенной платформы HybriLIT, включая суперкомпьютер «Говорун», как гиперконвергентной программно-определяемой среды с иерархической системой хранения и обработки данных.

- Создание многоцелевой программно-аппаратной платформы аналитики Больших данных на основе гибридных аппаратных ускорителей (GPU, FPGA, квантовые системы); алгоритмов машинного обучения; инструментов аналитики, отчетов и визуализации; поддержки пользовательских интерфейсов и задач.
- Проектирование и разработка распределенной программно-конфигурируемой высокопроизводительной вычислительной платформы, объединяющей суперкомпьютерные (гетерогенные), грид- и облачные технологии для эффективного использования новых вычислительных архитектур.
- Разработка системы защиты компьютерной инфраструктуры на основе принципиально новых парадигм, включая квантовую криптографию, нейрокогнитивные принципы организации данных и взаимодействия объектов данных, глобальную интеграцию информационных систем, универсальный доступ к приложениям, новые интернет-протоколы, виртуализацию, социальные сети, данные мобильных устройств и геолокации.

Таблица 7. Примерная оценка требуемых вычислительных ресурсов

|               |                | 2024 | 2025 | 2026 | 2027 | 2028 | 2029  | 2030 |
|---------------|----------------|------|------|------|------|------|-------|------|
| LHC Tier1     | CPU (Pflops)   | 1,53 | 1,69 | 1,84 | 2,03 | 2,22 | 2,45  | 2,68 |
| (CMS)         | Disk (PB)      | 18   | 20   | 25   | 28   | 31   | 34    | 40   |
|               | Tape (PB)      | 46   | 50   | 60   | 70   | 80   | 90    | 100  |
|               | Network (Gbps) | 200  | 400  | 400  | 600  | 600  | 800   | 800  |
|               |                |      |      |      |      |      |       |      |
| LHC Tier2     | CPU (Pflops)   | 0,73 | 0,81 | 0,88 | 0,96 | 1,04 | 1,15  | 1,27 |
| (ATLAS, CMS,  | Disk (PB)      | 7,7  | 8,5  | 9,2  | 10   | 11,  | 12,80 | 14   |
| ALICE, LHCb и | Network (Gbps) | 200  | 400  | 400  | 600  | 600  | 800   | 800  |
| др.)          |                |      |      |      |      |      |       |      |
| СК «Говорун»  | CPU (Pflops)   | 1,2  | 2,2  | 3,2  | 4,2  | 5,2  | 6,2   | 7,2  |
|               | Disk (PB)      | 8    | 9    | 10   | 11   | 12   | 13    | 14   |
| Озеро данных  | Disk (PB)      | 60   | 60   | 60   | 80   | 80   | 80    | 100  |
|               |                |      |      |      |      |      |       |      |
| *NICA         | CPU (Pflops)   | 2,2  | 2,6  | 8,6  | 8,6  | 15,6 | 15,6  | 15,6 |
| Tier 0,1,2    | Disk (PB)      | 17   | 24   | 47   | 75   | 96   | 119   | 142  |
|               | Tape (PB)      | 45   | 88   | 170  | 226  | 352  | 444   | 536  |
|               | Network (Gbps) | 400  | 400  | 400  | 400  | 400  | 400   | 400  |
|               |                |      |      |      |      |      |       |      |
| *Baikal-GVD,  | CPU (Pflops)   | 0,94 | 1,02 | 1,2  | 1,28 | 1,36 | 1,54  | 1,62 |
| NOvA, JUNO,   | Disk (PB)      | 1,9  | 3,2  | 3,5  | 3,8  | 4,6  | 4,9   | 5,2  |
| DUNE          | Tape (PB)      | 9    | 12   | 15   | 18   | 21   | 24    | 27   |
| Tier 0,1,2    | Network (Gbps) | 200  | 200  | 200  | 200  | 200  | 200   | 200  |
|               |                |      |      |      |      |      |       |      |

<sup>\*</sup> Финансирование вычислительных ресурсов на компьютинг по NICA и Нейтринной программе ОИЯИ будет осуществляться в рамках бюджетов соответствующих направлений.

#### Математическая поддержка исследований, проводимых в ОИЯИ

Важным направлением деятельности является обеспечение математической, алгоритмической и программной поддержки экспериментальных и теоретических исследований, проводимых в ОИЯИ. Целью являются моделирование физических процессов, создание алгоритмов и программных комплексов для обработки и анализа экспериментальных данных, разработка алгоритмов в области машинного и глубокого обучения, искусственного интеллекта и когнитивной интеллектуальной робототехники, систем квантового интеллектуального управления, развитие методов компьютерной алгебры и квантовых вычислений, а также аналитики Больших данных.

### Ожидаемые результаты

- 1. Развитие информационно-вычислительных систем для анализа и обработки экспериментальных данных в области радиобиологии.
- 2. Развитие алгоритмов на основе рекуррентных и сверточных нейронных сетей для задач машинного и глубокого обучения и аналитики Больших данных, предназначенных в первую очередь для решения различных задач в экспериментах по физике частиц, в том числе для мегапроекта NICA и нейтринных экспериментов.
- 3. Создание современных инструментов исследований для международных коллабораций (NICA, нейтринная программа ОИЯИ, эксперименты на LHC).
- 4. Развитие новых численных и вычислительных моделей, включая квантовые вычисления, для теоретических исследований, проводимых в ОИЯИ.
- 5. Разработка алгоритмов интеллектуального управления физическими экспериментальными установками ОИЯИ на основе квантового подхода.
- 6. Разработка на базе платформы аналитики Больших данных системы для анализа и защиты данных компьютерной сети ОИЯИ в режиме реального времени на основе сетевого трафика.
- 7. Развитие алгоритмов машинного обучения и искусственного интеллекта для оптимизации
- функционирования и интеллектуального мониторинга распределенных вычислительных систем.

  8. Создание аналитической системы нового поколения на основе эффективных методов
- и алгоритмов формализации, извлечения знаний и обработки Больших данных.
- 9. Разработка интеллектуальных информационных систем для научных исследований и приложений.
- 10. Развитие квантовых ИТ-технологий обработки данных с доступом к NISQ (Noisy Intermediate-Scale Quantum) компьютерам/квантовым компьютерам с надежной защитой от ошибок.
- 11. Разработка масштабируемых алгоритмов и программного обеспечения для обработки многопараметрических, многомерных, иерархических наборов данных эксабайтного объема.

# Цифровая экосистема ОИЯИ

Одной из наиболее важных задач Семилетнего плана является создание общеинститутской цифровой платформы «Цифровая экосистема ОИЯИ». Основной целью является организация цифрового пространства с единым доступом и обменом данными между электронными системами, а также автоматизация действий, требовавших ранее личного или письменного обращения. Платформа должна обеспечить интеграцию существующих и перспективных сервисов поддержки научной, административной и социальной деятельности, а также сопровождение инженерной и ІТ-инфраструктур Института.

Пользователь получит возможность единой точки входа в цифровую среду ОИЯИ, через которую будет осуществляться доступ к масштабной сети разнообразных сервисов. Интерфейс «Цифровой экосистемы» будет представлять собой «витрину» цифровых сервисов и ресурсов с возможностью осуществления определенного набора действий (например, управления учетными записями)



**Рис. 33.** Направления развития в рамках математической поддержки исследований, проводимых в ОИЯИ

либо перехода на полнофункциональную версию сервиса. Примерами сервисов являются ресурсы для пользователей базовых установок, библиотечные сервисы, серверы документов, вычислительные ресурсы МИВК, административные сервисы 1С (финансы, кадры, электронный документооборот) и т.д.

В рамках создаваемой платформы зарегистрированные пользователи (имеющие учетную запись ОИЯИ – Single Sign-On, SSO) смогут оформлять и согласовывать различные документы в электронном виде, а также регистрироваться и использовать научные и административные сервисы без заполнения бумажных форм и личного посещения ответственных за них сотрудников. В личном кабинете сотрудника будет доступна система оповещений от различных сервисов (например, о документах, ожидающих подписания). Уровень доступа к сервисам будет зависеть от должности сотрудника и выполняемых им функциональных обязанностей. Для администраторов сервисов будет организован удобный интерфейс, позволяющий оперативно обновлять информацию. Часть ресурсов станет доступна и для незарегистрированных пользователей: телефонный справочник, информация по диссертационным советам, научное программное обеспечение, карта ОИЯИ.

В рамках цифровой платформы будет развиваться геоинформационная система ОИЯИ, включающая интерактивную карту, информацию по зданиям и прочим объектам ОИЯИ (планы зданий, инженерные и прочие сети, размещение персонала, учет и анализ использования помещений с учетом класса, типа и предназначения) и т.д. Геоинформационная система позволит осуществлять быстрый и удобный поиск информации как по зданиям, так и по сотрудникам ОИЯИ. Предполагается использование технологии мобильных роботов и элементов квантового управления для решения задач автоматической экспликации помещений (построения планов зданий) и локализации объектов на карте.

Платформа должна предоставлять надежный и безопасный доступ к данным различного типа, возникающим в процессе работы Института, — от открытых до конфиденциальных. Выборка данных из ключевых сервисов будет помещаться в хранилище для дальнейшего совместного анализа с использованием технологий Больших данных и искусственного интеллекта. На основе таких данных, как сведения о публикациях сотрудников, финансовая информация, использование вычислительных ресурсов, будет возможен автоматизированный мониторинг показателей функционирования как отдельных проектов, так и Института в целом.

#### Ожидаемые результаты

Создание платформы «Цифровая экосистема ОИЯИ».



Рис. 34. Цифровая экосистема ОИЯИ

## Таблица 8. МИВК

(тыс. долларов США)

| Виды расходов                    | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | ВСЕГО    |
|----------------------------------|------|------|------|------|------|------|------|----------|
| Расходы на персонал (ст. 1-3)    |      |      |      |      |      |      |      |          |
| Материальные расходы на          |      |      |      |      |      |      |      |          |
| создание, развитие, модернизацию |      |      |      |      |      |      |      |          |
| (ст. 5, 6, 9, 10, 18, 19)        |      |      |      |      |      |      |      | 40 000,0 |
| Расходы на эксплуатацию и        |      |      |      |      |      |      |      |          |
| обслуживание                     |      |      |      |      |      |      |      |          |
| (ст. 5, 6, 7, 8, 10, 14)         |      |      |      |      |      |      |      | 14 757,4 |
| Расходы на международное         |      |      |      |      |      |      |      |          |
| сотрудничество                   |      |      |      |      |      |      |      |          |
| (ct. 4)                          |      |      |      |      |      |      |      |          |
| Сервисные расходы                |      |      |      |      |      |      |      |          |
| (ст. 11,12,13,14,15,16,17))      |      |      |      |      |      |      |      |          |
| ВСЕГО                            |      |      |      |      |      |      |      |          |